The Union of Convex Polyhedra in Three Dimensions
نویسندگان
چکیده
We show that the number of vertices, edges, and faces of the union of k convex polyhedra in 3-space, having a total of n faces, is O(k + kn log k). This bound is almost tight in the worst case, as there exist collections of polyhedra with Ω(k + knα(k)) union complexity. We also describe a rather simple randomized incremental algorithm for computing the boundary of the union in O(k + kn log k logn) expected time.
منابع مشابه
A Simpler Linear-Time Algorithm for Intersecting Two Convex Polyhedra in Three Dimensions
Chazelle [FOCS’89] gave a linear-time algorithm to compute the intersection of two convex polyhedra in three dimensions. We present a simpler algorithm to do the same. 1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems
متن کاملExact Minkowski sums of polyhedra and exact and efficient decomposition of polyhedra in convex pieces
We present the first exact and robust implementation of the 3D Minkowski sum of two non-convex polyhedra. Our implementation decomposes the two polyhedra into convex pieces, performs pairwise Minkowski sums on the convex pieces, and constructs their union. We achieve exactness and the handling of all degeneracies by building upon 3D Nef polyhedra as provided by Cgal. The implementation also sup...
متن کاملDrawing Stressed Planar Graphs in Three Dimensions
There is much current interest among researchers to nd algorithms that will draw graphs in three dimensions. It is well known that every 3-connected planar graph can be represented as a strictly convex polyhedron. However, no practical algorithms exist to draw a general 3-connected planar graph as a convex polyhedron. In this paper we review the concept of a stressed graph and how it relates to...
متن کاملTetrahedralization of Simple and Non-Simple Polyhedra
It is known that not all simple polyhedra can be tetrahedralized, i.e., decomposed into a set of tetrahedra without adding new vertices (tetrahedralization). We investigate several classes of simple and non-simple polyhedra that admit such decompositions. In particular, we show that certain classes of rectilinear (isothetic) simple polyhedra can always be tetrahedralized in O(n2) time where n i...
متن کاملModelling Decision Problems Via Birkhoff Polyhedra
A compact formulation of the set of tours neither in a graph nor its complement is presented and illustrates a general methodology proposed for constructing polyhedral models of decision problems based upon permutations, projection and lifting techniques. Directed Hamilton tours on n vertex graphs are interpreted as (n-1)- permutations. Sets of extrema of Birkhoff polyhedra are mapped to tours ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Comput.
دوره 26 شماره
صفحات -
تاریخ انتشار 1993